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Abstract

Coarse solid elastic enough particles form a packed bed in a vertical cylinder con®ned from below
and from above by permeable elastic plates. A gas is forced through the lower plate with a velocity
exceeding the terminal (transport) velocity. Adjacent to the lower plate the particles are entrained and
impact on the upper plate. As a result, ¯uidization regimes of still unreported types take place in the
con®ned cylinder. These regimes are analyzed qualitatively by a theoretical model proposed here. This
model describes the mean motions of the gas and particles. It includes the mass and momentum
equations for the gas and particle phases and the equation of the kinetic energy of particle ¯uctuations.
The system of equations is supplemented by constitutive equations for the averaged drag force, granular
pressure, kinetic energy dissipation due to inelastic particle collisions, and energy generation. It is
assumed that generation of the kinetic energy is caused by the lateral Magnus force due to particle
rotation. Steady state solutions of the equations are obtained, which describe the ¯uidization regimes in
a con®ned cylinder, namely disperse for a ¯uidized bed with increasing or decreasing volume fraction
and for an inverted packed bed. Experiments are performed to show the existence of the disperse regime
of ¯uidization. Stability of the disperse bed with respect to small perturbations is considered. It is shown
that a disperse ¯uidized bed is unstable for su�ciently concentrated dispersions where the bulk modulus
of elasticity of the granular phase is negative. The e�ect of vibrations of the upper plate upon
¯uidization regimes is also studied. Resonant frequencies are detected in the concentration region where
the bulk modulus of elasticity is positive. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fluidization is an operation by which an assemblage of solid particles are transformed into a
¯uid-like state through contact with a ¯owing gas or liquid. Fluidized beds have considerable
advantages for material processing and are used in numerous important industrial applications
(Kuini and Levenspiel, 1991).

One of the research goals of ¯uidization is the delineation of the various gas±solid
¯uidization regimes and transitions between them. A ¯uid ¯owing slowly upward through a
bed of solid particles merely percolates through the void spaces between the particles. This is a
packed bed ¯ow regime. With increasing ¯ow rate, a stage is reached, when the particles are
just suspended in the upward ¯owing gas or liquid. At this point the frictional force between
particle and ¯uid counterbalances the particle weight, so that the pressure drop through any
section of the bed is equal to the weight of the particles and ¯uid in that section. This state is
referred to as minimum ¯uidization.

In gas±solid systems, when the ¯ow rate exceeds that of minimum ¯uidization, large
instabilities, namely bubbling and channeling, are observed, leading to a bubbling ¯uidized
bed. As the gas velocity is further raised, the heterogeneous character of the bed gradually
changes, giving way to increasing uniformity, culminating in the state in which no large
discrete bubbles or voids are present. This regime prevails with the gas ¯ow rate increasing up
to the so-called terminal (or transport) velocity (Kuini and Levenspiel, 1991). As the terminal
velocity is approached, there is a sharp increase in the rate of particle carryover. In the absence
of solids recycling, the bed would empty in short order. Solids can be fed to the bottom of the
column. Then, the fully entrained transport ¯ow appears where the concentration of the
resulting suspension depends on both the velocity of the gas and the feeding solid ¯ow rate.
Such a circulating bed is on the average almost homogeneous. If the particles are fed into the
column bottom, e.g. via external cyclones and a standpipe, then it is possible to maintain in
the column a relatively large solid concentration typical to the fast bed condition (Yerushalmi
and Cancurt, 1979; Lim et al., 1995).

In this paper, we study new ¯uidization regimes when the terminal velocity is exceeded,
possibly signi®cantly, and the particles are contained within a volume con®ned from above by
a permeable elastic plate. Su�ciently, elastic particles bounce o� the upper plate. We will show
that under certain conditions subsequent interparticle collisions bring about disperse
¯uidization in the con®ned cylinder. Otherwise, inelastic particles form an inverted packed bed
(plug) adjacent to the upper plate. In this case, vibrations of the upper plate can be applied to
bring the bed to a vibro¯uidized state (Goldshtein et al., 1995). One could then consider
combined vibro- and gas-¯uidization of solid particles in a con®ned volume. One obvious
advantage of such a system is that ¯uidization can, generally, proceed up to very high gas
¯owrates, resulting in very high relative gas-particle velocities. This can yield e�cient heat and
mass transfer between the gas and the particles, which is bene®cial in many industrial
¯uidization operations. Note that in a con®ned ¯uidized bed the relative velocities can be much
higher than those prevailing in a fast ¯uidized bed (Yerushalmi and Cancurt, 1979; Lim et al.,
1995) where they are limited by the mean particle settling velocity in a homogenous ¯uidized
bed, which is less than the terminal velocity.
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This paper presents a theoretical model of disperse ¯uidization in a con®ned volume.
Towards this goal, we review and modify existing models of other ¯uidization regimes.
There is extensive literature devoted to investigations of di�erent aspects of the ¯uidization

process, including works on fundamentals of ¯uidization, namely, minimum ¯uidizing velocity,
terminal velocity, and pressure drop in a ¯uidized bed. For a thorough discussion of these
works, the reader is referred to the book of Kuini and Levenspiel (1991) and the survey of
Glicksman et al. (1994). More advanced ¯uidized bed models, based on momentum and mass
conservation equations, are also reviewed by Glicksman et al. (1994). These investigations
employ relevant empirical and semi-empirical correlations, which are inter alia used as
supplemental constitutive equations for these hydrodynamic models of ¯uidization. These
models are also used for a more subtle analysis of ¯uidization, including instabilities and
transient regimes.
One of the important subjects of these studies is the instability of a statistically uniform

¯uidized bed, which causes large ¯uctuations in particle concentration. A natural and common
speculation is that these instabilities lead to the formation of bubbles originating in the
¯uidized bed. Jackson (1963) showed that steady motion of a homogeneous gas-particle
suspension including the gas and solid inertia and drag forces is always unstable. Wallis (1969)
introduced the granular pressure that resists particle motion. He used simple model equations
to conclude that the criterion for instability is that the kinematic wave speed exceeds the
dynamic wave speed. Using physical arguments, Batchelor (1988) wrote down the momentum
equation of solid-particle motion in a ¯uidized bed. This equation assumes a phenomenological
barotropic dependence of the granular pressure on solid volume fraction with a coe�cient
representing, actually, the bulk modulus of elasticity. As a result, he generalized Wallis'
criterion for instability. A comprehensive review of recent works on the subject can be found in
the paper of Batchelor and Nitsche (1994). Nonlinear stability analyses of a uniformly ¯uidized
bed are given in several studies (see Refs. Ganser and Drew, 1990; Harris and Crighton, 1994;
Lammers and Biesheuvel, 1996 and papers cited therein).
Quantitative use of the momentum equation requires some insight into the physical origin of

the e�ective elasticity of particle arrangement and calculation of the bulk modulus, governing
the granular pressure.
In the kinetic theory of gases the pressure is induced from the randomly ¯uctuating motion

of the molecules. It is, therefore, reasonable to expect that the granular pressure may arise
from random motion of particles in situations in which their inertia is signi®cant. In recent
years, considerable attention has been focused on developing a kinetic theory for the rapid
motion of granular materials. (For recent discussions, see Ref. Goldshtein and Shapiro, 1995).
This theory deals with the motion of a suspension of particles undergoing solid-body collisions.
The e�ect of the ¯uid on particle motion is neglected. Therefore, analysis of hydrodynamic
interactions within a group of many particles is needed. Recently, such an analysis was
performed by Koch (1990), who considered dilute gas±solid suspensions of small particles with
low Reynolds number. The velocity distribution of the particles then appears to be nearly
Maxwellian, if the particle Stokes number happens to be su�ciently high. This seems to be an
immediate consequence of the signi®cance of the hydrodynamic and solids interactions in
interparticle exchange.
Elucidation of the very nature of ¯uctuations of the particle velocity lies within the focus of
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several theoretical models. Buyevich (1994, 1997) and Buyevich and Kapbasov (1994) proposed
a model according to which the random ¯uctuations are due to ¯uctuations of forces exerted
on individual particles by the ¯uid. They considered ¯uctuations of particle concentration as a
physical reason for ¯uctuations of hydrodynamic forces, which in turn a�ect the particle
concentration distribution. Nonlinear dependence of those forces on the particle volume
fraction leads to the occurrence of an additional source term in the average momentum
equation, causing either particle acceleration or deceleration with respect to the mean ¯ow.
Gidaspow and Huilin (1996) measured the granular temperatures in a circulating ¯uidized

bed. Zenit et al. (1997) measured the collisional solid particle pressure in a uniform ¯uidized
bed. It is shown, in particular, that the phenomenological dependence of the particulate
pressure on the particle volume fraction suggested by Batchelor (1988) is in quantitative
agreement with the experimental data, while the granular pressures reported by Buyevich and
Kapbasov (1994) are signi®cantly smaller than corresponding experimental values.
It should be noted that the Batchelor's barotropic dependence is applicable only to

uniformly ¯uidized bed. Generally, such dependencies can be derived proceeding from kinetic
models of particle ¯uctuation motions, and are to be di�erent for di�erent ¯uidization
processes.
An alternative concept of particle velocity ¯uctuations was proposed by Goldshtik and

Kozlov (1973), where concentration ¯uctuations were neglected. The ¯uctuating motion of the
particles was attributed to the action of a Magnus lateral force exerted on particles that
randomly rotate in the shear ¯ow of the ambient gas. We shall show that this model enables us
to obtain di�erent barotropic dependencies of the particulate pressure on the particle volume
fraction depending on the type of ¯uidization processes.
A speci®c goal of the present work is the analysis of di�erent stationary regimes of the

disperse ¯uidization in con®ned volumes. For this purpose the model of Goldshtik and Kozlov
(1973) describing the ¯uctuations arising due to the Magnus force is further extended. We
obtain a set of equations governing the granular temperature and the bulk modulus of a
homogenous ¯uidized bed. These properties are expressed in terms of the particle volume
fraction, mixture supply rate and properties of the gas and particles.
The paper is organized as follows. Equations describing the mean ¯ow of a gas±solid

suspension are derived in Section 2. An analysis of stationary regimes of ¯uidization in an
in®nite medium is given in Section 3. Theoretical and experimental studies of a ¯uidized bed in
con®ned volumes is presented in Section 4. The stability problem of the stationary solutions in
con®ned volumes is addressed in Section 5. Combined vibro- and gas-¯uidization processes are
investigated in Section 6.

2. One-dimensional model of a gas-¯uidized bed

Some of the elements of the model proposed here may be found in the works of Batchelor
(1988), Nigmatulin (1978), and Goldshtik and Kozlov (1973). In this section, we describe the
general form of the equations that govern the mean particle and gas motion in the vertical
direction. In parallel, we delineate the basic di�erences between the present model and the
models developed in the previous studies.
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The ¯uidizing medium under consideration is a gas, with density r0g. The particles are
assumed to be identical, and of uniform density r0s . Both ¯uidizing gas and particles are
incompressible, moreover r0g=r

0
s � 1:

The ¯uidized bed is assumed to be statistically homogeneous in each horizontal plane. The
mean particle velocity is vertical, and is not necessarily steady. The mean value of any property
j, which is denoted by hji, is a spatially averaged value over a horizontal plane y = const (see
Fig. 1). Hence,

j � 1

dN

XdN
x�1

j�x� � hj�x�i �1�

where j�x� corresponds to the center of xth particle, and dN is the total number of particles.
In view of the horizontal homogeneity, this spatial average is equivalent to an ensemble mean
(Batchelor, 1988).
Consider a control volume bounded by two horizontal planes (see Fig. 1) so that the

distance between the planes is small compared with the distance over which the change in the
mean number density n�y 0,t 0 � is appreciable. We assume that the particle average rotational
velocity is zero. The translational velocity of the center of xth particle may be represented as

u 0s�x� � u 0s � w 0s�x�, �2�
where w 0s is the translational velocity ¯uctuation and u 0s�y 0,t 0 � is the mean particle velocity
which is positive when directed upwards, along the y '-axis (see Fig. 1). Each particle rotates
about its center with the velocity o 0s. Using hw 0si � ho 0si � 0, we denote the following statistical
properties

w 02s� � hw 02s �x�i, o 02s� � ho 02s �x�i �3�

Fig. 1. Schematic of a ¯uidized bed with a coordinate system.
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The averaging procedure, set down above, is similar to that used by Batchelor (1988) who
considered ¯uidization processes, however, without particle rotation.
By virtue of the smallness of the ¯uid density r0g=r

0
s � 1, the translational particle velocity

¯uctuations w 0s� are much smaller than the average velocities of the relative particle to gas ¯ow,
that is

w 0s�<<ugs � ju 0g ÿ u 0sj �4�

where u 0g is the mean gas velocity. The inertial properties of each particle are characterized by
its mass m and moment of rotational inertia I. In particular, for uniform spheres of radius a,
one has m � 4pa3r0s=3, I � 2ma2=5. Hence, the kinetic energy of random motion, k 0s is

r0sask
0
s �

1

2
nmw2

s� �
1

2
nIo 02s� , �5�

where as is the particle volume fraction, related to the voidage ag by �as � ag� � 1. The particle
volume fraction may be expressed in terms of mean number density by the equation
as � 4npa3=3.
We assume equal rotational and translational rotational distribution between degrees of

freedom. Thus, using Eq. (5) one obtains

1

2
w 02s� �

1

5
a2o 02s� �6�

This yields a relationship between the spatially averaged rotational and translational velocities

o 0s� �
w 0s�
a

����
5

2

r
, �7�

and the following expression for the total average kinetic energy of particle random motion

k 0s � w 02s� : �8�

This equation is later on used for evaluation of the Magnus force (see Eqs. (14) and (15)) and
the kinetic energy production (see Eqs. (16) and (27)).
The assumption of equipartition of the kinetic energy between the translational and

rotational modes used above, corresponds to particle collisions as perfectly rough spheres.
More realistic collisional models of granular materials, accounting for di�erent particle
roughness coe�cients, range from perfectly rough to perfectly smooth spheres (see Refs.
Goldshtein and Shapiro (1995), Lun and Savage (1987) and the papers cited therein). All these
works, however, neglect the e�ect of the gas on particle motion.
We now consider the equation of state of the granular gas for a su�ciently concentrated

disperse mixture, i.e. as > 0:1. In this case, Enskog's approximate kinetic model of dense gases
of identical spheres may be applied to calculate the equation of state of the granular gas
(Hirschfelder et al., 1954)
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p 0s� �
1� e

2

r0sw
02
s�

2

as

1ÿ
�
as

�a s

�1=3
, �as � 0:63 �9�

where �a s is a volume particle fraction of the most densely packed bed, e is the particle
coe�cient of restitution, p 0s� is the granular gas pressure. The e�ect of inelasticity on particle
collisions is to decrease the granular pressure compared to the case of elastic collisions by the
factor �1� e�=2. Note that granular shear stresses in ¯uidized beds are negligible.
The granular pressure, generally, consists of a purely kinetic part and a collisional transfer

pressure part (Gidaspow, 1994; Goldshtein and Shapiro, 1995). The pure kinetic pressure is
negligible for concentrated granular gases, and is not included in Eq. (9).
For formulation of the hydrodynamic equations for the average particulate and gas

properties, we need to calculate the forces acting on the particles. Forces exerted by the gas on
the particles, generally, include the drag force, the added mass force, the Basset force and the
Magnus force. In our case, the added mass and the Basset forces are negligible because
r0g=r

0
s � 1:

For the spatially averaged drag force acting on the particle we use the following relationship
(Goldshtik, 1972; Buyevich and Kapbasov, 1994)

fm � hfm�x�i � Cm
a2g
a2g�

pa2
r0gu
02
gs

2
: �10�

Here, Cm is a resistance coe�cient of a single sphere and ag� is the minimal gas passage area
fraction, which can be approximated as (Goldshtik, 1972)

ag� � 1ÿ 1:17a2=3s : �11�

We restrict our attention to rapid gas ¯ow through the ¯uidized bed so that the Reynolds
number based on particle diameter is large, i.e.,

Regs �
2u 0gsa

ng

>> 1 �12�

where ng is the gas kinematic viscosity. In this case, Cm is close to 1/2, and Eq. (10) takes on
the form

fm � 1

2

a2g
a2g�

pa2
r0gu
02
gs

2
: �13�

The Magnus force arises due to particle rotation. The expression for this force was ®rst
obtained for very small Reynolds numbers by Rubinow and Keller (1961). A review of
empirical correlations, which are valid for small and moderate Reynolds numbers, is given in
the recent work of Lun and Lin (1997). We will, however, use the expression of Goldshtik and
Sorokin (1968)
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fM�x� � 8

3
pa3r0g

h
v 0gs�x� � o�x�

i
, �14�

valid for very large Reynolds numbers.
One can show that the spatially averaged Magnus force hfMi is of the order O�w 0s�o 0s� �. Then

it follows from Eqs. (13) and (14) that the ratio of this force to the drag force is

fM
fm
� O

 
w 0s�o

0
s�

u 02gs

!
, �15�

and it, therefore, can be neglected in the hydrodynamic momentum equations by virtue of Eqs.
(4) and (7). It should be noted, however, that the Magnus force plays an important role in the
generation of the kinetic energy of random particle motion. Evolution of this property is
governed by the kinetic energy conservation equation which involves terms associated with
production and dissipation of the ¯uctuation energy due to the interaction with the ambient
gas and interparticle collisions.
Energy production due to Magnus forces fM determined by Eq. (14) may be estimated by

assuming the angles between vectors v 0gs�x� and o 0s�x�, and also between vectors �v 0gs�x� � o 0s�x��
and w 0s�x� to be equal to p/4 (Goldshtik and Kozlov, 1973). Then, using Eq. (7) one obtains for
the generated power Q+ in unit volume

Q� � hfM�x�w 0s�x�i �
4

3

����
5

2

r
r0gpa

2u 0gsw
02
s� : �16�

Assuming an isotropic distribution of the translational ¯uctuation velocity, w 0s�x� one obtains
for the viscous dissipation (Nigmatulin, 1978)

hfm�x�w 0s�x�i � ÿ
3

8
r0gpa

2
a2g
a2g�

u 0gsw
02
s� : �17�

The ratio of the dissipated energy to the produced energy is

hfm�x�o 0s�x�i
hfM�x�o 0s�x�i

� 0:18
a2g
a2g�

�18�

One can, therefore, see that for the granular gas, except in the vicinity of the close-packed
state, the viscous kinetic energy dissipation is signi®cantly smaller than the kinetic energy
production due to the Magnus force.
Eq. (16) implies that the energy production term is proportional to the translational kinetic

temperature. A kinetic model for a dilute gas±solid suspension, suggested by Koch (1990),
yields that for very small Reynolds numbers the source term in the granular kinetic energy
equation, arising from particle hydrodynamic interactions, is inversely proportional to the
square root of the temperature. Buyevich (1994, 1997) attributed the generation of the
¯uctuation energy to particle concentration ¯uctuations. His model disregards particle rotation,
as does the model of Koch (1990). Buyevich obtained the source term in the energy equation
as proportional to the square root of the temperature. We point out that in contrast with the
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present model the theories of Buyevich (1997), and Koch (1990) are applicable for very small
Reynolds numbers.
Consider kinetic energy losses due to particle collisions. There are three possible reasons,

why particle collisions cause kinetic energy dissipation. The ®rst reason is the work of the
viscous hydrodynamic forces stemming from the jump-like changes in the gas and particle
velocity that accompany any collision. These losses are negligible when r0g=r

0
s � 1. The second

reason is the action of surface friction that, generally, impedes sliding of impacting spheres
during oblique collisions. In our model, the particles are assumed perfectly rough spheres. In
this case, no kinetic energy is dissipated due to surface friction. Part of the translational kinetic
energy is converted into particle rotational kinetic energy during oblique collisions. Note that
the viscous dissipation of the rotational kinetic energy is negligible at the high Reynolds
numbers Regs considered in this study.
The third reason of the kinetic energy dissipation is due to the inelasticity of collisions when

the coe�cient of restitution, e, is smaller than unity. Considerable attention has previously
been focused on developing models of this mechanism of the collisional dissipation (see Ref.
Goldshtein and Shapiro, 1995; Lun and Savage, 1987). We consider concentrated dispersions
of inelastic perfectly rough spheres and use for the dissipated power per unit volume Qÿ the
relevant equation

Qÿ � 1ÿ e2

8

r0s
a

a4=3s

�a1=3
s

 
1ÿ

�
as

�a s

�1=3
!w 03s� �19�

The assumptions set down at the beginning of this section together with the expressions for the
forces and kinetic energy production and dissipation are further used in the hydrodynamic
equations. These equations may be obtained by the method of spatial averaging (Nigmatulin,
1978). As a result one arrives at the following one-dimensional equations:

gas mass continuity equation @ag

@t 0
� @agu 0g

@y 0
� 0 �20�

particle conservation equation @as

@t 0
� @asu 0s

@y 0
� 0 �21�

gas momentum balance equation @p 0g
@y 0
ÿ nfm ÿ r0gagg � 0 �22�

particle momentum equation r0sas

�
@u 0s
@t 0
� u 0s

@u 0s
@y 0

�
� ÿ@p

0
s�

@y 0
� nfm ÿ r0sasg �23�

particle kinetic energy equation r0sas

�
@k 0s
@t 0
� u 0s

@k 0s
@y 0

�
� ÿp 0s�

@u 0s
@y 0
�Q 0� ÿQ 0ÿ �24�

This system is supplemented by the following constitutive equations
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f 0m �
1

2

a2g
a2g�

pa2
r0gu
02
gs

2
, �25�

p 0s� �
1� e

2

r0sk
0
s

2

as

1ÿ
�
as

�a s

�1=3
, �26�

Q 0� �
4

3

����
5

2

r
r0gnpa

2u 0gsk
0
s �27�

Q 0ÿ �
1ÿ e2

8

r0s
a

a4=3s

�a1=3
s

 
1ÿ

�
as

�a s

�1=3
!k 03=2s �28�

Note that the inertial terms in the gas momentum Eq. (22) are neglected, as well as the viscous
dissipation term in the Eq. (24) for the ¯uctuation energy. Eqs. (27) and (28) are obtainable
from Eqs. (16) and (19) upon using relations (7) and (8). We use these equations for the
analysis of steady state ¯uidized beds and unsteady ¯uidization regimes.

3. Steady-state ¯uidized bed in an uncon®ned volume

Solid particles at rest in a vertical cylinder which are supported by a permeable gas
distribution plate form a packed bed. If the gas is forced through the plate from below, the
bed remains packed until the ¯ow rate reaches a certain critical value. At this value the bed
expands a little and becomes ¯uidized. The voidage, ag increases and the interstitial gas
velocity decreases and becomes lower value needed for the particles to be carried out of the
bed. As a result a new equilibrium regime is reached, when particles are quiescent on the
average, u 0s � 0, however, they are engaged in random motion (w 0s� 6� 0, o 0s� 6� 0). Such a bed is
called a bed at minimum ¯uidization.
Increase of the gas ¯ow rate causes the bed to expand further. Under certain conditions this

expansion is uniform, and the bed remains statistically homogeneous, with the number density
of the particles taking just the value required for the weight of a particle to be balanced by the
mean drag force exerted by the gas. The particles can be carried out by the gas and recycled to
the bed entrance forming a recirculating ¯uidized bed. Actually, the particles, dispersed
throughout the ¯uid, likewise fall vertically relative to the ¯uid under the action of gravity.
Such a homogenous stationary ¯uidized bed (ag � const) is similar to a homogeneous cloud of
particles sedimenting in a quiescent gas (Batchelor, 1988). We ®rst apply the governing
equations set out in the previous section to this classical situation.
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3.1. Homogenous steady state ¯uidized bed

We look for a solution of Eqs. (20)±(28), where all functions are t and y independent, i.e.,
constant quantities. Equations of mass conservation (20) and (21) are integrated for
homogeneous stationary ¯uidization, leading to

agu 0g � asu 0s � u0, �29�
In the above equation all the parameters are constant. Here u0 is the velocity of the gas±solid
mixture at the inlet to the bed. If one considers particle sedimentation in a quiescent gas, u0
should be put equal to zero. In a homogeneous ¯uidized bed, the velocity u0 determines the mean
volumetric ¯ux of the mixture across any speci®ed horizontal surface. When particle entrainment
(carry over) takes place, the solids must be recycled or replaced by fresh material to maintain
steady-state operation. In this context, the quantity u0 represents the recirculation ¯ux. Eq. (29)
enables one to express the gas velocity in terms of particle velocity and volume fraction.
Eqs. (23) and (24) of the granular phase momentum and energy yield in the present case

nfm ÿ r0sasg � 0 �30�

Q 0� ÿQ 0ÿ � 0 �31�
Furthermore, the mean particle velocity is a function of as, i.e., u 0s�as� This is obtained using
Eqs. (25), (29) and (30):

u 0s � u0 �
ÿ
1ÿ 1:17a2=3s

�
ut �32�

where

ut �
 
16

3

r0s
r0g

ag

!1=2

: �33�

Here, ut is the terminal velocity of a single particle in a quiescent gas. Using Eqs. (27) and (28),
one obtains from Eq. (31) the expression for the ¯uctuation kinetic energy

k 01=2s � 8

����
5

2

r
r0g
r0s

0:86ut

1ÿ e2

ÿ
1ÿ 1:17a1=3s

�ÿ
1ÿ 1:17a2=3s

�
a1=3s �1ÿ as�

�34�

Note that although this expression is explicitly independent of u0, it is valid for u0rut. This
inequality is in fact the condition of validity of the homogeneous stationary solution discussed
here. We can now substitute Eq. (34) into Eq. (26) to obtain the barotropic dependence speci®c
for a uniform ¯uidized bed.

4. Fluidized bed in a con®ned volume-theory and experiment

Here, we consider the motion of particles and gas in a cylindrical space between two
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permeable plates separated by a distance H. If the plates are made of an elastic material and
the particles are elastic enough, they bounce o� the upper plate when u0 > ut. The re¯ected
particles collide with those moving upward and force them to move downward. We will
analyze whether an equilibrium particle distribution can take place in the con®ned volume
under such conditions, in which the particles while moving randomly, have zero net velocity on
the average, i.e., u 0s � 0. We show that such a regime can indeed be realized and call it a
disperse ¯uidized bed in a con®ned volume. Generally, this disperse bed is nonhomogenous,
i.e., as � as�y 0 �

4.1. Theoretical study

We assume that the condition u 0s � 0 is valid throughout the whole bed up to the boundaries
y 0 � 0,ÿH. This assumption complies with the obvious boundary conditions of
impenetrability of the distributor plates. Physically this means that the plates are su�ciently
rigid and their collision with particles are su�ciently elastic so that u 0s � 0 also at the
boundaries. These requirements do not preclude the occurrence of a situation where the
particles are attached (i.e., with k 0s � 0) to the upper (or lower) plate. This situation can take
place when the particle kinetic energy dissipation dominates over the kinetic energy production
and all the particles form an inverted packed bed (plug) at the upper plate. We show below
that such a regime is indeed predicted by our model.
Since u 0s � 0, the integral of Eqs. (20) and (21) takes now the form

agu 0g � u0 �35�

here u0 is the velocity of the gas at the inlet to the bed, at y 0 � ÿH where ag � 1 (Fig. 1).
Furthermore, Eqs. (23) and (24) combined with Eqs. (25), (27) and (28) and u 0s � 0 yield

dp 0s�
dy 0
� r0sgas

 
U 2

0ÿ
1ÿ 1:17a2=3s

�2 ÿ 1

!
�36�

k 01=2s � k1=2s�
1ÿ 1:17a1=3s

�1ÿ as�a1=3s

�37�

where

U0 � u0=ut �38�
is a dimensionless parameter of the disperse bed and

k1=2s� � 8

����
5

2

r
r0g
r0s

0:86u0
1ÿ e2

�39�

here, ks� is the characteristic value of the ¯uctuation energy.
Substituting Eq. (37) into Eq. (26) yields the equation for the granular pressure in terms of

the particle fraction as

P. Vainshtein et al. / International Journal of Multiphase Flow 25 (1999) 1431±14561442



p 0s� �as� � 1� e

2

r0sks�

2
c�as�, �40�

where

c�as� � a1=3s

ÿ
1ÿ 1:17a1=3s

�
�1ÿ as�2

�41�

It follows, thus, that there exists a barotropic relationship between the granular pressure and
the particle fraction, which is a direct consequence of the equilibrium between the production
and dissipation of the granular kinetic energy. As such, the pressure p 0s� �as� is equal to zero at
as � 0 and as � �a s � 0:63 and it has a maximum at a � asc � 0:32. Eq. (26), and consequently,
Eq. (40) are both valid for as > 0:1.
Note that this barotropic relationship is di�erent from that for a homogeneous ¯uidized bed,

which was discussed in Section 3.
We now de®ne the dimensionless variables

y � y 0

H
, ks � k 0s

ks�
, ps � p 0s�

r0sks�
�42�

Using Eq. (42) and substituting Eq. (40) into Eq. (36) yields

das

dy
� Pg

as

 
U 2

0ÿ
1ÿ 1:7a2=3s

�2 ÿ 1

!
dc
das

, �43�

where Pg is a dimensionless group

Pg � 4gH

ks� �e� 1� �44�

Using Eqs. (40) and (41), one can rewrite Eq. (43) in the form

dz
dy
� ÿ1:17Pg

K�z�
zÿ zc

z3, �45�

where

z � a1=3s , K�z� �
ÿ
ag� �U0

�
a3g

�
z2 � U0 ÿ 1

1:17

�
a2g�
ÿ
4:64z3 ÿ 1:89z2 ÿ 1:27z� 1:47

� > 0, �46�

and ag� given by Eq. (11) is expressible via z in the form

ag� � 1ÿ 1:17z2: �47�
Note that K�z� is a positive function since U0 > 1.
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The boundary condition for z posed at the lower supporting plate y � ÿ1 is

y � ÿ1: z � z0 �48�

where z0 is some boundary value. An integral condition�0
ÿ1

as�y� dy � Hp

H
�a s � 0:63

Hp

H
�49�

is imposed upon as�y� and the height Hp of the resting non¯uidized (packed) bed. In the course
of integration of Eq. (43) a value z0 is to be chosen to satisfy Eq. (49).
Eqs. (30) and (31) have a trivial stationary solution k 0s � 0, corresponding to the packed bed

(as � �a s). Regarding the packed bed adjacent to the lower distribution plate, this solution may
be unstable if gas velocities are su�ciently large to cause ¯uidization. This solution describes
also a plug adjacent to the upper plate. It is clear that in the limiting case when packed solids
completely ®ll the con®ned cylinder space, this solution is unique.
Consider now the case where the height of the packed bed is only slightly less than H

(HÿHp � 1) (deep bed). Note ®rst that an integral curve of the di�erential Eq. (45) cannot
intersect the line z � zc, since at this line the derivative dz=dy tends to in®nity. In this case the
boundary value z � z0 lies in the region �z > z > zc. Hence, dz=dy<0, i.e., the particle fraction
decreases in the direction of gas ¯ow. Peculiarities of the behavior of the integral curves
depend on the dimensionless group Pg given by (44). This group is very small for small volume
sizes, H, or high ¯uctuation energies; i.e., for very elastic spheres, eR1. Note, that in this case
the parameter U0 should not to be very large. This condition is ful®lled for su�ciently large
particles but not large gas supply velocity, u0. On the contrary, Pg is very large for large
volume sizes or for inelastic spheres. Note, that the condition U0 > 1 �v0 > ut� applies then for
su�ciently small particles. Curves 1, 2 in Fig. 2(a) correspond to Pg � 1 and Pg � 1,
respectively. We have seen that at Pg � 1 there exists a stationary solution. The solution
corresponds to the deep ¯uidized bed with the solid fraction decreasing along the bed height.
On the other hand, when Pg � 1 the value z decreases rapidly with y reaching z � zc within

the bed (see also Eq. (45)) at y � ymax. For y > ymax one has z � 0, i.e., no particles are present
in the upper part of the bed ymax<y<0 (see Fig. 2(a), curve 2). This is impossible for two
reasons: ®rstly, since U0 > 1 the particles are carried upwards thereby inevitably reaching the
upper plate, the feature which is not reproduced by this solution. Secondly, the distribution
represented by curve 2 in Fig. 2(a) is impossible since it does not satisfy the integral condition
(49) at least at su�ciently large Pg (low gas velocities and small inelastic particles).
Let us now consider a ¯ow where the total solid mass is small, Hp=H<1 (shallow bed) so

that the boundary value z � z0 lies in the region z<zc. Hence, dz=dy > 0, i.e., the particle
fraction increases in the direction of gas ¯ow. Curves 3 and 4 in Fig. 2(b) correspond to Pg �
1 and Pg � 1, respectively. We see that at Pg � 1 there exists a stationary solution
corresponding to the disperse ¯uidized bed with particle fraction increasing along the height.
Similarly to the conclusion drawn above for the deep bed, no physically plausible solution

exists when Pg � 1, also for the shallow bed (see curve 4 in Fig. 2(b)).
Thus, one can summarize that the stationary Eqs. (45) and (46) predict four typical regimes

of ¯uidization in con®ned volumes. Out of these regimes, the two, corresponding to Pg � 1
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are not physical. However, in cases where Pg � 1 our equations predict the existence of the
plug regime, where all the particles form an inverted packed bed (plug) adjacent to the upper
plate. The two regimes corresponding to Pg � 1 will be analyzed for stability. As we will see,
the deep ¯uidized bed (with particle volume fraction decreasing along the bed height) is
unstable at least when Pg40. Note, that the realization of the disperse regime represented by
curve 3 in Fig. 2(b) for a gas±solid system, requires very shallow beds (small H ) and/or very

Fig. 2. Integral curves of di�erential equation (43) for di�erent mass contents and values of the dimensionless group
Pg: (a) deep disperse ¯uidized bed; (b) shallow disperse ¯uidized bed. Position y � Hp=�Hÿ 1� shows the particle
mass content of the packed beds. Curves 1, 3 correspond to Pg � 1, large and small particle mass contents,

respectively. Curves 2, 4 correspond to Pg � 1, large and small particle mass contents, respectively.
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elastic large particles. Alternatively, one can envision these regimes in liquid-¯uidized beds
where rg and rs may be of the same order of magnitude, thereby yielding small Pg.
Finally, note that in the limiting situation Pg40 the non-uniformity of the disperse ¯uidized

beds diminishes. In this case one obtains from Eq. (45) the simple solution

as � asa � �a s

Hp

H
�50�

corresponding to the fully disperse ¯uidized bed.
Regions of existence of plug and disperse regimes in terms of parameters Pg, U0 for several

values of Hp=H are shown in Fig. 3. The disperse regime corresponds to the regions under the
curves. The numerical procedure of integration of di�erential Eq. (45) subject to integral
condition (49) is described in the Appendix A.

4.2. Experimental study

An experiment has been designed in order to show the existence of the disperse regime of
¯uidization in a con®ned volume. The experimental set-up is shown in Fig. 4. The test section
of the apparatus consists of a vertical tube, 27 cm long and 10 cm in internal diameter. It is
con®ned from above and from below by gas permeable distribution plates. Air is supplied by a
high pressure blower. The air velocity, which was measured by hot wire anemometer, ranges
from 4 to 17 m/s. 500 glass spheres of 0.34 cm in diameter with a restitution coe�cient 0.89
was placed on the lower plate, which corresponded to the ratio Hp=H � 0:0125. Minimum
¯uidization had been observed at an air velocity of about 4.6 m/s. The onset of ¯uidization
had been observed at the velocity of 10±11 m/s, with the pressure drop across the bed 5 mm
H2O. This velocity lied well below the terminal velocity (in our case 13.8 m/s), when a well
developed ¯uidization had been obtained, but the particles did not bounce back from the
upper distributor plate. Further, increase of velocity up to 15±16 m/s yielded the regime of
disperse ¯uidization in a con®ned volume with particle bouncing (see photograph in Fig. 5). A
slight increase (of order 0.2 m/s) of the air velocity above 16 m/s led to an instantaneous

Fig. 3. Dimensionless height of the ¯uidized bed as a function of ¯uidization velocity.
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transition from dispersed to inverted packed regime (a plug adjacent to the upper plate). In
this regime the pressure drop was about 200±230 mm H2O.

Calculations by Eqs. (39) and (44) yield the value of the dimensionless parameter Pg � 37:3.
The above two regimes (namely, disperse and plug) corresponding to the respective velocities
of 15 and 16 m/s are marked in Fig. 3. One can see that the onset of the plug regime (®lled
triangle) is well described by the theoretical curve of Hp=H � 0:0125. The disperse regime
(hollow circle) is located below this curve, i.e., within the disperse regime domain. The
experiments were performed for the systems with low particle concentrations of up to about
0.25 particles/cm3. In such systems the particle concentration was found to be nonuniform.
This nonuniformity amounted to about few percents.

The ¯ow velocity range in the experiments was limited by the performance of the blower.
The velocity could not be increased above 20 m/s. At these regime the air pressure supplied by
the blower was not su�ciently high to achieve dispersed regimes in systems with higher solid
fractions. The dense systems according to our theoretical analysis are unstable and, hence,
should be investigated. These experiments as well as the analysis of higher solid fractions and
their stability are the subjects of further investigation.

Fig. 4. Schematic of the experimental set-up. p1, p2, p3 denote pressure measurement taps.
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5. Stability of stationary ¯uidized beds in a con®ned volume

The stability of a ¯uidized bed was considered in the case of an in®nite region. Here, we use
the theory developed above to treat this problem in a con®ned volume. Generally, a stationary
disperse ¯uidized bed in a con®ned volume has a nonuniform concentration distribution.
However, we consider this problem in the limiting case Pg40 where the bed is homogeneous,
i.e., solution (50) applies.
For the analysis of the stability of this solution, we de®ne the following dimensionless

variables

t � t 0

t�
, us � u 0st�

H
, �51�

where t� � H=k1=2s� is the characteristic propagation time of the disturbances of the particle
¯uctuation energy. Then, using Eqs. (42) and (51) one can rewrite Eqs. (21), (23), (24), (26)±
(29) in the respective forms

@as

@t
� @asus

@y
� 0 �52�

Fig. 5. Photograph of the disperse ¯uidized regime in a con®ned volume of the height H � 27 cm, containing one
monolayer of glass beads (restitution coe�cient e � 0:89) of diameter 3.4 mm; air velocity 15 m/s.
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as
@us

@t
� asus

@us

@y
� @ps

@y
� 0 �53�

as

@ks

@t
� asus

@ks

@y
� ps

@us

@y
� Q� ÿQÿ �54�

Q� �
����
5

2

r
r0g
r0s

uo

k1=2s�

H

a

as

1ÿ as

j1ÿ k1=2s�

u0
usjks �55�

Qÿ � 1ÿ e2

8
1:17a1=3s

as

1ÿ 1:17a1=3s

H

a
k3=2s �56�

ps � 1� e

2

ks

2

as

1ÿ 1:17a1=3s

�57�

We investigate the stability of the stationary solution

as � asa, us � 0,

k1=2sa �
1ÿ 1:17a1=3sa

�1ÿ asa�a1=3sa

�58�

We now assume the perturbation of the stationary solution (58) to be of the form

as�t,y� � asa � ast�t,y�, us�t,y� � ust�t,y�, �59�
assuming that the kinetic energy obeys the equilibrium dependence Eq. (37). This assumption
enables one to exclude the kinematic energy equation from the stability analysis. All terms of
the governing Eqs. (52) and (53) vanish in the case of the homogeneous bed. Using Eqs. (36),
(37) and (57), one obtains the linearized equations for the small perturbation quantities ast and
ust,

@ast

@t
� asa

@ust

@y
� 0 �60�

asa
@ust

@t
� P�asa�

�
a1=3sc ÿ a1=3sa

�@ast

@y
� 0

where P�asa� is a positive function

P�asa� � 1� e

4

4:64asa ÿ 1:89a2=3sa ÿ 1:27a1=3sa � 1:47

3a2=3sa �1ÿ asa�3
�61�

The equation system (60) may be easily transformed into a single equation which for the
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velocity perturbation is

@2us

@t2
ÿ P�asa�

�
a1=3sc ÿ a1=3sa

�@2us

@y2
� 0 �62�

Note that Eq. (62) is hyperbolic in the region asa<asc and elliptic in the region asa > asc.
Any small disturbance of a homogeneous disperse bed may be resolved into Fourier

components which evolve independently. We, therefore, consider a disturbance that varies
sinusoidally with y with the wave number K. In order to satisfy a boundary condition on the
velocity ust � 0 at y � 0 and y � ÿ1, and the integral mass condition (49), we put

ust � Asin�mpy�eict, ast � Bcos�mpy�eict �63�
where A and B are constants and c is a complex number. Substitution in (60) gives the
condition for the existence of a non-zero solution for A and B in the form

c2 � �pm�2P�asa�
�
a1=3sc ÿ a1=3sa

�
�64�

One can see that a disturbance with an exponentially growing amplitude exists if

as > asc �65�
This means that for the very concentrated mixtures (Hp=H > asc=�a s00:5) the fully disperse bed
in a con®ned volume is absolutely unstable. It is explained by the fact that in the region as >
asc the bulk modulus of elasticity of the granular phase is negative, dps=das<0. Any
perturbation would continue to grow under the ensuing pressure drop. As a result, an initially
homogeneous state of the disperse bed would eventually be transformed into an
inhomogeneous unsteady pattern of di�erent concentrations. One could anticipate that the
inhomogeneous disperse bed with decreasing volume fraction, corresponding to as > asc (see
Section 4), will be unstable as well. This result accords with the instability of the homogeneous
distribution of particles sedimenting in uncon®ned volumes (Batchelor, 1988).
A more general stability analysis of the nonbarotropic case, where the energy equation

should be incorporated, yields similar results. We omit this treatment, but note that the e�ect
of nonequilibrium energy distribution in a ¯uidized bed is to bring an additional decaying
(stable) mode (see Ref. Koch, 1990).

6. Combined vibro- and gas-¯uidized beds

It is well-known that vibrations of a plate supporting a packed layer of solid particles result
under certain conditions in vibro-¯uidization (Goldshtein et al., 1995). One may anticipate that
vibrations of the upper porous plate, con®ning the vertical cylinder from above, can a�ect
¯uidization processes described in Section 4.
We ®rst study the in¯uence of small amplitude vibrations on a con®ned ¯uidized beds in

disperse region. Let the upper plate perform the harmonic vibrations with an angular
frequency o and an amplitude ha, where
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ha=H<<1: �66�
Then, the boundary conditions on the mean particle velocity are to be given as follows:

us � 0 at y � ÿ1

us � ecos dy at y � 0 �67�
where e and d are the dimensionless groups

e � oha

k1=2s�
, d � oH

k1=2s�
�68�

de®ned in accordance with the dimensionless variables determined by Eqs. (42) and (51). Note
that the small term ha=Hsin dy was neglected in Eq. 67, which is justi®ed by the smallness of
the vibration amplitude.
It is clear that under such conditions particles are engaged in a mean motion (us 6� 0) in

addition to the random ¯uctuations.
In addition to condition (66) we assume that the vibrational amplitude is su�ciently small,

so that the dimensionless group e is a small parameter of the problem, i.e., e� 1. In such
circumstances, the governing Eqs. (52)±(57) can be linearized about the stationary solution
characterized by the zero mean particle velocity, us � 0. For the sake of simplicity we consider
the e�ect of vibrations on the fully disperse, homogeneous ¯uidized bed (Pg40). Moreover, we
study the pure hydrodynamic problem assuming, as in the stability problem analysis, that the
kinetic energy obeys the equilibrium dependence (37). The governing equations are now
reduced to Eq. (60). We seek a solution in the form

us�y,t� � eust�y,t�, as�y,t� � asa � east�y,t� �69�
where

u 0st � V�y� cos dt, ast � F�y� sin dt �70�
here V( y ) and F( y ) are functions to be determined. Boundary conditions (67) yield

V� ÿ 1� � 0, V�0� � 1 �71�
Substitution of Eq. (70) in Eq. (60) gives

V 00 � lV � 0

F � ÿasa

d
V 0 �72�

where prime denotes a derivative with respect to y, and l is the following dimensionless group

l � d2

P�asa�
�
a1=3sc ÿ a1=3sa

� �73�
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In the region asa<asc one has l > 0. Then, the solution of the problem (72) and (71) is

V�y� � cos
���
l
p

sin
���
l
p sin

���
l
p

y� cos
���
l
p

y

F�y� � ÿasa

���
l
p

d

 
cos

���
l
p

sin
���
l
p cos

���
l
p

yÿ sin
���
l
p

y

!
�74�

Solution (70) with P, V as above describes standing waves in the granular gas. The result is
clearly not valid at resonance frequencies

���
l
p � np that corresponds to the characteristic

frequencies

o r �
����������������������������������������������������
pn

ks�
H 2P�asa�

�
a1=3sc ÿ a1=3sa

�vuut �75�

where n is an integer. One might argue that the singularity in the amplitude is in practice
eliminated by dissipation e�ects, such as particulate viscosity. The situation may turn out to be
quite similar to that of resonance tubes (see Ref. Goldshtein et al., 1996 and the papers cited
therein), where in a narrow frequency band around each resonant frequency, shock waves
appear in a gas traveling to and fro in the tube being repeatedly re¯ected from the piston and
from the closed end. The resonance oscillations in the vibro- and gas-¯uidized beds merit an
independent thorough investigation.
In the region asa > asc one has l<0, and the solution of the problem is

V�y� � e
�����
ÿl
p

e
�����ÿlp
ÿ eÿ

�����ÿlp e
�����
ÿl
p

y ÿ 1

e2
�����ÿlp
ÿ 1

eÿ
�����
ÿl
p

y

F�y� � ÿasa

�������ÿlp

d

 
e
�����
ÿl
p

e
�����
ÿl
p
ÿ eÿ

�����
ÿl
p e

�����ÿlp
y � 1

e2
�����
ÿl
p
ÿ 1

eÿ
�����ÿlp

y

!
�76�

As one could anticipate no resonant frequencies exist in this case.
The above analysis shows that small vibrations of the upper plate result in unsteady ¯ow

patterns where the particle velocity and volume fraction oscillate about the stationary solution.
Such ¯ow patterns take place irrespectively of the fact whether the fully disperse ¯uidized bed
is stable as in the case asa<asc or unstable as in the case asa > asc. Forced vibrations of the
upper plate prevent evolving of the instability described in Section 5. Perturbations of the
velocity and particle fraction change now periodically in the form prescribed by Eq. (70). One
can anticipate that the small vibrations will stabilize the disperse ¯uidized bed with decreasing
volume fraction as well.
We discuss now the e�ect of vibrations on the ¯ow patterns where the inverted packed bed

(plug) is formed. Recall that such ¯ow patterns can appear when the dimensionless group Pg

takes on su�ciently large values.
The in¯uence of low-frequency vibrations upon layers of solid particles was thoroughly
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investigated by Goldshtein et al. (1995) in regimes where the e�ect of air ¯ow is negligible.
They revealed that with increasing frequency o the layers detach from the vibrating plate and
pass through three vibrational states, with the respective behaviors being as of a solid plastic
body, a liquid, and a gas. In the gas-like state the collisional character of particle motion is
most obvious, the compression and expansion waves propagate along the layer. These results
imply that the inverted packed beds can possibly be a�ected by vibrations of the upper plate in
order to bring it to ¯uidization. Then, the combined e�ect of vibrations and gas ¯owing from
below leads to a ¯uidization regime, which is also a subject of current and future investigations
(Fichman et al., 1995; Goldshtein et al., 1999).

7. Conclusions

The present paper considers ¯uidization of gas±solid systems in con®ned volumes (tubes).
We describe two possible ¯uidization regimes, namely a disperse ¯uidized bed and a plug
adjacent to the upper distribution plate. Realization of these regimes is governed by the
constitutive dimensionless parameters, in particular, that connected with gravity (see Eq. (44)),
dimensionless ¯uidization velocity, and the ratio of the bed and tube heights. Existence of the
disperse regime had not been hitherto reported in the literature. These regimes are modeled
theoretically using one-dimensional gas-particle ¯ow equations combined with the Goldshtik's
model for the particle kinetic energy production. An experimental veri®cation of the existence
of the disperse regime has been performed. The theoretical study includes also an analysis of
stability of stationary disperse ¯uidized beds and combined vibro- and gas-¯uidized beds. The
latter contemplates a new area in applied research on ¯uidization.
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Appendix A. Calculation of particle fraction distribution within the con®ned volume

De®ne the following integral function

I�y� �
� y

ÿ1
as�y� dy �A1�

Then, the integration of di�erential equation (45) under the integral condition (49) may be
reduced to solving the following system of two di�erential equations

dz
dy
� ÿ11:17Pg

K�z�
zÿ zc

z3,
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dI

dy
� z3,

z � z0, I � 0 at y � ÿ1

I�0� � 0:63Hp=H � asa � z3sa �A2�
with zc � 0:684. The last condition imposed on I(0), stemming from Eq. (49), enables one to
determine the yet unknown parameter z0.
This problem may be solved by the method of shooting. In particular, if zsa<zc, the required

value z0 lies necessarily in the region 0<z0<zc. On the other hand, if zc > zsa then z0 lies in the
region zc<z0<�z � 0:63.
As an example, we consider

r0g=r
0
s � 10ÿ3, a � 2:5 mm, e � 0:94, u0 � 12 m=s: �A3�

Then, from Eqs. (38) and (44) one has

Pg � 1:51, U0 � 1:04: �A4�
Under such conditions the problem (A2) has a mathematical solution shown in Fig. A1 (curve
1). This solution where z0 � 0:33 corresponds to a shallow bed with the particle mass
Hp=H � 0:13. It can be easily seen that this solution is physical only when Hr � 38 mm, in
which case the thickness Hp corresponds to one monolayer of spheres. Clearly, that condition
z0 � 0:37 corresponds to still smaller values of Hp=H. A situation where z0 � 0:37 is shown in

Fig. A1. Modi®ed particle volume fraction z as function of the spatial coordinate y, a � 2:5 mm, e � 0:94. 1 Ð

Pg � 1:51, U0 � 1:04, Hp=H � 0:13, z0 � 0:33, the solution has physical sense for beds with height H � 38 mm. 2
Ð Pg � 1:51, U0 � 1:04, z0 � 0:37, nonphysical solution since z reaches zc within the bed. 3 Ð Pg � 0:1,
U0 � 1:04, Hp=H � 0:33, z0 � 0:5. 4 Ð Pg � 0:01, U0 � 1:04, Hp=H � 0:33, z0 � 0:57.
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Fig. A1, curve 2. The function z representing a particle volume fraction decreases with y
reaching zc within the bed at ymax � ÿ0:5. As explained in Section 4, this is physically
nonplausible. Thus, no physical solution exists in the example (A3) and (A4) of ¯ow
parameters.
The solutions corresponding to Hp=H � 1=3, U0 � 1:04 and Pg � 0:1 and Pg � 0:01 are

shown in Fig. A1 (curves 3 and 4, respectively). Note that in Fig. A1 (curve 3) the modi®ed
particle volume fraction z at the upper plate reaches the value zc. On the other hand in the
case shown in Fig. A1 (curve 4) at the upper plate one has z<zc. In the latter case the disperse
¯uidized bed in the con®ned volume is almost homogeneous.
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